Taming the Leverage Cycle

Christoph Aymanns 1,2,3 J. Doyne Farmer 1,2,5 Fabio Caccioli 3,5b and Vincent Tan 2

¹Institute of New Economic Thinking
²Mathematical Institute, University of Oxford
³SRC, London School of Economics
⁴UCL, Department of Computer Science
⁵Santa Fe Institute

November 11, 2015

An anecdote about a leverage cycle

Figure: Leverage of US Broker-Dealers (solid black line), S&P500 index (dashed blue line), VIX S&P500 (red dash-dotted line.

Strong co-movement: Can we connect these variables in a simple dynamic model?

Prior work on leverage cycles

Important contributions

- \blacktriangleright Geanakoplos, 2003 and 2010 \rightarrow leverage cycles in rational 2 period model;
- \blacktriangleright Adrian and Shin, 2008 \rightarrow empirical study of procyclical leverage;
- \blacktriangleright Poledna et al., 2013 \rightarrow leverage and heavy tailed returns.

Main ideas in summary

- Banks use leverage (Assets/Equity) to boost returns
- Ability to leverage depends on market risk
- If risk is low leverage is high, if risk is high leverage is low
- Leveraging up pushed prices up, deleveraging pushes prices down

Prior work on leverage cycles

Important contributions

- Geanakoplos, 2003 and 2010 \rightarrow leverage cycles in rational 2 period model;
- Adrian and Shin, 2008 \rightarrow empirical study of procyclical leverage;
- \blacktriangleright Poledna et al., 2013 \rightarrow leverage and heavy tailed returns.

Main ideas in summary

- Banks use leverage (Assets/Equity) to boost returns
- Ability to leverage depends on market risk
- If risk is low leverage is high, if risk is high leverage is low
- Leveraging up pushed prices up, deleveraging pushes prices down

```
Our aim: study this in dynamical system of the "form"

Leverage = F (Perceived risk),

Prices = G (Leverage),

Perceived risk = H (Prices).
```

Stochastic discrete time model of leverage cycles

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Outline for the remainder of this talk

1. A model of a leveraged bank and a fund investor.

2. Emergence of endogenous risk \rightarrow leverage cycles.

3. Optimal leverage policy in the presence of both exogenous and endogenous risk.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bank leverage regulation

Motivation: VaR constraint with normal log returns

$$\lambda(t) \leq \overline{\lambda}(t) = F_{\mathsf{VaR}}(\sigma^2(t)) = rac{1}{\sigma(t)\Phi^{-1}(a)} \propto rac{1}{\sigma(t)}.$$

Our model: 3 parameter leverage constraint

$$\lambda(t) \leq \overline{\lambda}(t) = F_{(\alpha,\sigma_0^2,b)}(\sigma(t)) := \alpha(\sigma^2(t) + \sigma_0^2)^b.$$

Note:

- Due to profit maximization: $\lambda(t) \approx ar{\lambda}(t) :=$ target leverage,
- α : bank risk level (leverage at a given level of risk),
- b < 0: procyclical w.r.t σ(t),
- b > 0: countercyclical w.r.t σ(t),
- σ_0 : lower/upper bound on leverage.

Cyclicality parameter b: procyclical vs. countercyclical policies

For now focus on Value-at-Risk (b = -0.5) only.

Risk estimation and portfolio adjustment

Historical estimation of volatility

Let p(t) be the price of the risky asset at time t. Then the bank's **perceived risk** evolves as

$$\sigma^{2}(t+\tau) = (1-\tau\delta)\sigma^{2}(t) + \tau\delta\left(\log\left[\frac{p(t)}{p(t-\tau)}\right]\frac{t_{\mathsf{VaR}}}{\tau}\right)^{2}$$

Balance sheet

Adjust size of balance sheet to meet target leverage:

$$\Delta B(t) = \tau \theta \{ \overline{\lambda}(t) (A_{\mathsf{B}}(t) - L_{\mathsf{B}}(t)) - A_{\mathsf{B}}(t) \}.$$

Adjust equity to meet equity target:

$$\kappa_{\rm B}(t) = au\eta\{\overline{E} - (A_{\rm B}(t) - L_{\rm B}(t))\}$$

The fund stabilizes the price dynamics of the risky asset

Fund characteristics:

- Not leveraged.
- Fund has a notion of a fundamental value μ of the risky asset.
- Dynamics of portfolio weight for risky asset:

$$\Delta w_{F}(t+ au) \propto
ho(\mu - p(t)) + \sqrt{ au}s(t)\xi(t),$$

where $\xi(t) \sim \mathcal{N}(0, 1)$ and s(t) follow GARCH(1,1).

Note:

- Fund stabilizes prices (buys if price below fundamental, sells above).
- For s = 0 we obtain deterministic system.
- Fund is source of "clustered" exogenous volatility.

Market mechanism for risky asset

1. Bank and fund demand function:

$$egin{split} D_{
m B}(t+ au) &= rac{1}{p(t+ au)} w_{
m B}(n(t)p(t+ au)+c_{
m B}(t)+\Delta B(t)), \ D_{
m F}(t+ au) &= rac{1}{p(t+ au)} w_{
m F}(t+ au)((1-n(t))p(t+ au)+c_{
m F}(t)). \end{split}$$

2. Compute $p(t + \tau)$ by market clearing:

$$1 = D_{\mathsf{B}}(t + \tau) + D_{\mathsf{F}}(t + \tau)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3. Compute new ownership of risky asset for bank $n(t + \tau)$ and fund $1 - n(t + \tau)$

We can collect full model in 6D map

Map:

$$x(t+\tau) = g(x(t))$$

State vector:

$$x(t) = [p(t), \sigma^{2}(t), n(t), L_{B}(t), w_{F}(t), p'(t)]^{T},$$

where:

- p: Price of risky asset.
- σ^2 : Perceived risk.
- n: Amount of asset owned by bank.
- ► *L*_B: Liabilities of bank.
- ▶ *w_F*: Investment into risky asset by fund.
- p': Past price of risky asset.

(i) Deterministic, small bank (weak endogenous risk): $\overline{E} = 10^{-5}$ and s = 0, (ii) Deterministic, large bank (strong endogenous risk): $\overline{E} = 2.27$ and s = 0, (iii) Stochastic, small bank (weak endogenous risk): $\overline{E} = 10^{-5}$ and s > 0. (iv) Stochastic, large bank (strong endogenous risk): $\overline{E} = 2.27$ and s > 0,

Deterministic: (i) small bank vs. (ii) large bank

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ ♀ ⊙

Stochastic: (iii) small bank vs. (iv) large bank

▲ロト ▲聞 ト ▲臣 ト ▲臣 ト → 臣 → のへで

How do leverage cycles depend on the model parameters?

Figure: Deterministic model (eigenvalues)

Leverage cycles only in procyclical region.

How do leverage cycles depend on the model parameters?

Figure: Critical leverage for emergence of leverage cycles: deterministic/stochastic (Lyapunov exponents)

Stochastic model destabilizes for smaller levels of leverage.

How do leverage cycles depend on the model parameters?

Figure: Critical leverage as a function of balance sheet adjustment speed

Slower balance sheet adjustment stabilizes the system.

Reminder: bank leverage policies

Target leverage

$$\lambda(t) \leq \overline{\lambda}(t) = F_{(lpha, \sigma_0^2, b)}(\sigma(t)) := lpha(\sigma^2(t) + \sigma_0^2)^b.$$

How do different values of "b" affect the overall volatility in the system?

200

イロマ イヨマ イヨマ

Intuition: Endogenous vs. exogenous volatility

Risk management dilemma

- Microprudential: Should reduce leverage when exogenous volatility is high.
- Macroprudential: Leverage adjustment can lead to even higher endogenous.

Intuition for our model

- Small bank + strong exogenous volatility:
 Value-at-Risk is optimal (b = -0.5)
- Large bank + low exogenous volatility:
 Constant leverage is optimal (b = 0)

What is the right trade off between micro- and macroprudential perspective?

Optimal cyclicality? - it depends

Figure: Realized shortfall (average large losses of bank) at constant leverage.

Optimal cyclicality crucially depends on bank size and strength of exogenous volatility.

Conclusions

- 1. Endogenous amplification of exogenous shocks as unintended consequence of regulation.
- 2. Crucial determinants of endogenous volatility:
 - Leverage and size of leveraged investor
 - Balance sheet adjustment speed: Dynamics and timescales matter!
- 3. Better leverage policies?
 - i Value-at-Risk is optimal if leveraged investor is small and lots of exogenous volatility

ii Constant leverage is optimal if leveraged investors is large and little exogenous volatility

Open question: which regime (i or ii) do we live in?

Back up

BACK UP

Full 6 D model (1/2)

Recall:

$$x(t) = [\sigma^{2}(t), w_{\mathsf{F}}(t), p(t), n(t), L_{\mathsf{B}}(t), p'(t)]^{\mathsf{T}},$$
(1)

Definitions:

Bank assets Target leverage Balance sheet adjustment Equity redistribution Bank cash Fund cash

$$\begin{aligned} A_{\mathsf{B}}(t) &= p(t)n(t)/w_{\mathsf{B}}, \\ \bar{\lambda}(t) &= \alpha(\sigma^{2}(t) + \sigma_{0}^{2})^{b}, \\ \Delta B(t) &= \tau\theta(\bar{\lambda}(t)(A_{\mathsf{B}}(t) - L_{\mathsf{B}}(t)) - A_{\mathsf{B}}(t)), \\ \kappa_{\mathsf{B}}(t) &= -\kappa_{\mathsf{F}}(t) = \tau\eta(\overline{E} - (A_{\mathsf{B}}(t) - L_{\mathsf{B}}(t))), \\ c_{\mathsf{B}}(t) &= (1 - w_{\mathsf{B}})n(t)p(t)/w_{\mathsf{B}} + \kappa_{\mathsf{B}}(t), \\ c_{\mathsf{F}}(t) &= (1 - w_{\mathsf{F}}(t))(1 - n(t))p(t)/w_{\mathsf{F}}(t) + \kappa_{\mathsf{F}}(t). \end{aligned}$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Full 6 D model (2/2)

Dynamical system:

$$x(t+\tau) = g(x(t)) \tag{3}$$

where the function g is the following 6-dimensional map:

$$\sigma^{2}(t+\tau) = (1-\tau\delta)\sigma^{2}(t) + \tau\delta\left(\log\left[\frac{p(t)}{p'(t)}\right]\frac{t_{\mathsf{VaR}}}{\tau}\right)^{2},\tag{4a}$$

$$w_{\mathsf{F}}(t+\tau) = w_{\mathsf{F}}(t) + \frac{w_{\mathsf{F}}(t)}{\rho(t)} \left[\tau \rho(\mu - \rho(t)) + \sqrt{\tau} s \xi(t) \right], \tag{4b}$$

$$p(t+\tau) = \frac{w_{\rm B}(c_{\rm B}(t) + \Delta B(t)) + w_{\rm F}(t+\tau)c_{\rm F}(t)}{1 - w_{\rm B}n(t) - (1 - n(t))w_{\rm F}(t+\tau)},$$
(4c)

$$n(t+\tau) = \frac{w_{\rm B}(n(t)p(t+\tau) + c_{\rm B}(t) + \Delta B(t))}{p(t+\tau)},\tag{4d}$$

$$L_{\rm B}(t+\tau) = L_{\rm B}(t) + \Delta B(t), \tag{4e}$$

$$p'(t+\tau) = p(t). \tag{4f}$$

Back

Guiding principles for choice of main parameters

1. Properties of the leverage cycle:

- Peak-to-trough ratio \approx 2,
- Period of cycles pprox 10 years,

determines α (bank risk level), \overline{E} (bank equity target).

2. Timescale for risk estimation:

• $t_{\delta} = 1/\delta \approx 2$ years (based on RiskMetrics).