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An anecdote about a leverage cycle
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Figure: Leverage of US Broker-Dealers (solid black line), S&P500 index (dashed blue
line), VIX S&P500 (red dash-dotted line.

Strong co-movement: Can we connect these variables in a simple dy-
namic model?



Prior work on leverage cycles
Important contributions
> Geanakoplos, 2003 and 2010 — leverage cycles in rational 2 period model;

» Adrian and Shin, 2008 — empirical study of procyclical leverage;

> Poledna et al., 2013 — leverage and heavy tailed returns.

Main ideas in summary

» Banks use leverage (Assets/Equity) to boost returns
> Ability to leverage depends on market risk
> If risk is low leverage is high, if risk is high leverage is low

» Leveraging up pushed prices up, deleveraging pushes prices down
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> Poledna et al., 2013 — leverage and heavy tailed returns.

Main ideas in summary

» Banks use leverage (Assets/Equity) to boost returns
> Ability to leverage depends on market risk
> If risk is low leverage is high, if risk is high leverage is low

» Leveraging up pushed prices up, deleveraging pushes prices down

Our aim: study this in dynamical system of the “form’

Leverage = F (Perceived risk) ,
Prices = G (Leverage),
Perceived risk = H (Prices) .



Stochastic discrete time model of leverage cycles
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Outline for the remainder of this talk

1. A model of a leveraged bank and a fund investor.

2. Emergence of endogenous risk — leverage cycles.

3. Optimal leverage policy in the presence of both exogenous and
endogenous risk.



Bank leverage regulation

Motivation: VaR constraint with normal log returns

1

A(t) < X(t) = Fuar(0?(t)) = (o-1(a) =

1
a(t)
Our model: 3 parameter leverage constraint

A(t) S X(t) = Fla 02,5 (0(1)) = a(0?(t) + 00)".

Note:

> Due to profit maximization: A(t) = X(t) := target leverage,

v

o bank risk level (leverage at a given level of risk),

v

b < 0: procyclical w.r.t o(t),

» b > 0: countercyclical w.r.t o(t),

v

oo: lower/upper bound on leverage.



Cyclicality parameter b: procyclical vs. countercyclical policies

— procyclical: b =-0.5
a/ao, --- constant: b = 0.0
-------- countercyclical: b = 0.5 |{

) - target leverage

o? - perceived risk

For now focus on Value-at-Risk (b = —0.5) only.



Risk estimation and portfolio adjustment

Historical estimation of volatility

Let p(t) be the price of the risky asset at time t. Then the bank’s perceived
risk evolves as

02(t+7'):(1—7'6)02(t)-|-7-5(|0g {%} tVTR>2

Balance sheet
Adjust size of balance sheet to meet target leverage:

AB(t) = r0{X(£)(As(t) - Le(t)) — As(t)}.
Adjust equity to meet equity target:

re(t) = Tn{E — (As(t) — Le(t))}



The fund stabilizes the price dynamics of the risky asset

Fund characteristics:
> Not leveraged.
» Fund has a notion of a fundamental value p of the risky asset.
» Dynamics of portfolio weight for risky asset:
Awe(t + 1) o p(p — p(t)) + VTs(t)§(t),
where £(t) ~ N(0,1) and s(t) follow GARCH(1,1).

Note:
» Fund stabilizes prices (buys if price below fundamental, sells above).
> For s = 0 we obtain deterministic system.

» Fund is source of “clustered” exogenous volatility.



Market mechanism for risky asset

1. Bank and fund demand function:

De(t +7) = we(n(t)p(t + 7) + ca(t) + AB(t)),

_1
p(t+7)

De(t +7) = we(t +7)((1 = n(2))p(t +7) + cr(2)).

p(t+7)
2. Compute p(t + 7) by market clearing:
1=Dg(t+7)+ De(t+7)

3. Compute new ownership of risky asset for bank n(t + 7) and fund
1—n(t+7)



We can collect full model in 6D map

Map:
x(t+ 1) = g(x(t))
State vector:

x(t) = [p(t), o*(t), n(t), La(2), wr (1), /()]
where:
> p: Price of risky asset.
> o2: Perceived risk.
» n: Amount of asset owned by bank.
Lg: Liabilities of bank.

> we: Investment into risky asset by fund.

v

v

p’: Past price of risky asset.



Examples of leverage cycles: we consider four parameter scenarios

(i) Deterministic, small bank (weak endogenous risk): E = 107° and s = 0,
(i) Deterministic, large bank (strong endogenous risk): E = 2.27 and s = 0,
(iii) Stochastic, small bank (weak endogenous risk): E = 107° and s > 0.
(iv) Stochastic, large bank (strong endogenous risk): E = 2.27 and s > 0,



Deterministic: (i) small bank vs. (ii) large bank
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Stochastic: (iii) small bank vs. (iv) large bank
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How do leverage

Leverage

cycles depend on the model parameters?
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Figure: Deterministic model (eigenvalues)

[ Leverage cycles only in procyclical region.




How do leverage cycles depend on

the model parameters?
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Stochastic model destabilizes for smaller levels of leverage.



How do leverage cycles depend on the model parameters?
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Figure: Critical leverage as a function of balance sheet adjustment speed

Slower balance sheet adjustment stabilizes the system.



Reminder: bank leverage policies
Target leverage

A(t) £ X() = Fa 2.5 (0(2)) 1= a(o*(t) + 03)"-

— procyclical: b =-0.5
--- constant: b = 0.0
“““““ countercyclical: b = 0.5|4

ajoy

- target leverage

X

o* - perceived risk

How do different values of “b"affect the overall volatility in the system?



Intuition: Endogenous vs. exogenous volatility

Risk management dilemma Intuition for our model
» Microprudential: Should reduce > Small bank + strong exogenous
leverage when exogenous volatility volatility:
is high. Value-at-Risk is optimal
> Macroprudential: Leverage (b=-05)
adjustment can lead to even » Large bank + low exogenous
higher endogenous. volatility:
Constant leverage is optimal
(b=0)

What is the right trade off between micro- and macroprudential perspec-
tive?



Optimal cyclicality? — it depends
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Figure: Realized shortfall (average large losses of bank) at constant leverage.

Optimal cyclicality crucially depends on bank size and strength of ex-
ogenous volatility.



Conclusions

1. Endogenous amplification of exogenous shocks as unintended consequence
of regulation.
2. Crucial determinants of endogenous volatility:
> Leverage and size of leveraged investor
> Balance sheet adjustment speed: Dynamics and timescales matter!
3. Better leverage policies?
i Value-at-Risk is optimal if leveraged investor is small and lots of exogenous
volatility
ii Constant leverage is optimal if leveraged investors is large and little
exogenous volatility

Open question: which regime (i or ii) do we live in?
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Full 6 D model (1/2)

Recall:
x(t) = [0%(t), we (1), p(1), (1), Lg (), p'(1)]T, 1)

Definitions:

Bank assets Ag(t) = p(t)n(t)/ws,

Target leverage A(t) = a(o?(t) + 03)?,

Balance sheet adjustment  AB(t) = 70(\(t)(Ap(t) — Lg(t)) — Ap(t)), @)

Equity redistribution kp(t) = —ke(t) = ™(E — (As(t) — La(t))),

Bank cash cg(t) = (1 — wg)n(t)p(t)/we + xe(t),

Fund cash cr(t) = (1 — we(t))(1 — n(t))p(t)/we(t) + re(t).



Full 6 D model (2/2)

Dynamical system:
x(t+7) = g(x(1))

where the function g is the following 6-dimensional map:

G2(t+7) = (1 — 76)0(£) + 75 (Iog L’)’,((?)} t":R)2 ,
we(t)

(0 [rp(p — p(1)) + V7sE(1)]

wg(cg(t) + AB(t)) + we(t + 7)cr(t)
1—wgn(t) — (1 — n(t))we(t+7)
wg(n(t)p(t + 7) + ca(t) + AB(t))
p(t+7) ’
Lg(t+7) = Le(t) + AB(t),
p'(t+ 1) = p(t).

we(t+7) = we(t) +

p(t+7)=

)

n(t+7)=



Guiding principles for choice of main parameters

1. Properties of the leverage cycle:

> Peak-to-trough ratio ~ 2,
> Period of cycles = 10 years,

determines « (bank risk level), E (bank equity target).

2. Timescale for risk estimation:

> t5 = 1/0 ~ 2 years (based on RiskMetrics).
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